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Abstract 

Asymptotic expressions for the Fourier spectra of pulses 

modulated by a carrier frequency plus linear FM are obtained 

for  several pulse  shapes,   using an asymptotic  series for the 

complex Fresuel integral.    A geometric interpretation of the 

terms in this series is given. 
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A Method for Evaluating a Generalized Fresnel Integral 

Related to the Spectra of Amplitude and Frequency Modulated Pulses 

A.    Statement of the Problem 

Recently questions have arisen concerning the magnitude of the inter- 

ference occurring between adjacent radars at the present AMRAD site.     These 

questions have created the need for evaluating the integral 

00 2 
G(f.d)=     \g(t)eiat     e-i2lTftdt (1) 

for various functional forms of   g(t)   and for various ranges of the magnitudes 
2 

of the essential parameters   fT   and  «T   ,   where 

t = time;   f = frequency in cycles per second;* 

a - the frequency modulation parameter in radians/sec   ; 

T  = the pulse duration in seconds; (2) 

g(t)  = h(t)    in   0 ^ t  —  T;    h(t)  = either a real or a complex function; 

g(t) =0    in   t < 0,   t > T. 

When the function   g(t)   is defined in the above manner,   Eq.   (1) can be re- 

written as follows: 

G(f. a) =    \ h(t) e1 W " 2TFft] dt    . (3) 

*The variable   f   can be replaced,   if the analysis required it,   by the difference 

frequency   Af = f - f   ,   where   f     is the CARRIER FREQUENCY and  f   is the ^ ' o o 
frequency at which the spectrum   G(f)   is viewed.     In this case,   f   is  required 

to lie in a range corresponding to the inequality stated in Eq.   (6),   but is 

otherwise arbitrary. 

1 



Evaluation of this integral yields in general the spectrum of a general pulse 

h(t)   modulated in amplitude,   phase and frequency.     The first two types of 

modulation correspond to variations in the amplitude and phase,   respectively, 

of the complex function  h(t).     Frequency modulation corresponds to non- 

vanishing values of the parameter   a.     In the present paper,   only amplitude 

and frequency modulation will be considered,   i. e. ,   h(t)   will be assumed to 

be a real function of   t. 

The integral in Eq.   (3) is a generalized Fresnel integral in the sense 

that for arbitrary functional forms of   h(t)    it is a generalization of the 

integral 

.    .       ("    i at    - 2Trft ,a) =    \   e   I J  dt    , I(f,a) =   \   exl"L    "     ""J dt   , (4) 

which can be reduced,   with the aid of the proper change of variables,   to a 

difference of two classical Fresnel integrals of the type encountered in 

Optics,   namely,   of the following type: 

u     . IT   ,.2 

J(u) =   \  e  c d|   . (5) 

Now the behavior of the special integrals,   Eqs.   (4) and (5),   is well 

known,   and extensive tables are available for use in evaluating them.     The 

same cannot be said,   however,   for the general case,   when   h(t)   in Eq.   (3) 

is other than a constant.     Very little information is available in the literature 

regarding the behaviour of the generalized integral.     In the absence of such 

information,   it was necessary to devise an original approach to the evaluation 

of Eq.   (3).     The approach developed by the author and employed in the present 

paper is outlined in Section C. 



B.     Summary of Results 

The integral in Eq.   (3) has been evaluated for nine different cases   - 

eight of them specific cases,   the other a general case.     In each case,   the 
2 

essential parameters   fT   and  aT     were assumed to obey the following 

inequality: 

2irfT   »  aT2 »   1  , (6) 

or equivalently,   in terms of variables   A and A   introduced later in the 

analysis,   the following inequality; 

A »  A » ~L-  •    A = ^Z  ;   A2 =  ?2—   . (7) 
2TTA AT 2TT 

The general case referred to above corresponds to the following 

representation of the function   h(t)   in the interval   0 ^ t   ^  T:    h(t) a piece- 

wise-linear function. * 

In this case,   assuming the interval   0 ^ t ^ T   to be divided into   N 

equal intervals,   each of length   T/N,   we have 

h(t)=hn(t)    in    (n-l)(l)  <  t   <(n)(^-)   ; (8) 

where 

h   (t)  - a       + a,   t   . (9) n on        In 

The eight specific pulse shapes which were treated,   together with 

the corresponding definitions of the function  h(t),   are listed below and also 

in Fig.   1.     In the equations below,   the function  h(t)   is followed in each case 

by the associated spectral function  G(f, a)   obtained by evaluating Eq.   (3) 

*A method for calculating the FM spectrum of a pulse approximated by a 
piecewipe linear function is outlined in Section D. 



with the aid of the methods outlined in Section C. * 

1.     Rectangular Pulse 

h(t)  =  1 (10) 

G(f,a)-i(^p) [i(aTZ -  ZTtfT)] exp   LUQ'T" -  2l I 

T + o(4-) 
f 

(ID 

2.     Triangular Pulse 

h(t) = ^    in   0<t5^ 

h(t)  = (L)(-t + T)    in^<tST 

(12) 

G(f, a) a   -( 
2rrT 7 

2 exp Lu^T   /4 
Q-T.2 -*2l 

(f •z?) 

exi ti aT     -  2TtfT 

u.^F 
11 + o(4) 

f 
(13) 

• The expressions for  G(f, a)   given in Eqs.   (11),   (13),   (15),   (17),   (19),   (21), 

(23),   and (25) were obtained in each case by approximating  G(f, en)   by the 

first non-vanishing term by the asymptotic expansion of  G(f, a)   (of the type 

derived in Section C).     When  G(f, a)   consists of the sum of several separate 

expansions,   taking the first term means adding the first term (non-vanishing) 

of each of the component expansions.     For example,   in Eq.   (43) one would 

take the sum of the first non-vanishing terms of the three expansions 
MM M 
S     ,      2    ,   and       2   . 

m = o      m = 1 m = 2 



3.     Parabolic Pulse 

h(t)  = (±h(l   -±) (14) 

G{f,a) = -(-U) 
IT    T 

+ i<7^> 

1 

7 
exp   [ijo'T2 -  Z-n-fTjj 

(.-•3?- 

7 
+   exp   >faT     - 2TrfT)J +   0(4-)       (15) 

i 

4.     Trapezoidal Pulse 

T - e h(t)  = h.(t) = t/T      in    0 < t < T   ;    T     =  ±S  ;   e < T  ; 

T+ € h(t)  = h2(t)  =   1 in    T_  < t < T+;    T+  = ±-± (16) 

i(t)  = h3(t)  = (-t+ T)/T      in    T+ < t < 

G(f.o) = -(—V-) 
4TT   T 

, exp     i ICT       -   2TTIT   [ 

7 AT 

(f 1)' 
IT 

exp   [ij«T+
2 -  ZTTITJI exp  [i | al     -  2-rrfTJl 

or      , + ~      aTTl 
(f V *-W + 0(4)   (iv) 

f 

5.     Parabolinear Pulse 

h(t)  = h. (t)  = a, ,t    in    0 <  t < T   ;  T 
T - e 

11 

h(t)  = h2(t)  =  1  - (-~-)(t - ^)2   in   T_ <t<x+ ; (18) 

i(t) = h3(t)  = an(-t+ T)    in    T+ < t < T  ; 

T - e T + e 
~Z~" ;    T+ T~ '   all " 2T- e    =   4T   + e 



G(f,a) = -(-4-) 
4TT 

11 

4TT   e 

1 exp [i(gT2 -  2TrfT][ 

f7 u.^p 

exp i JCT      -  2ir£T y 
at 

(f - -^y 

+ 
exp [l(ttT+2 - 2-rrf 

'^ 
(f - 

+ 
IT 

)3 f 
(19) 

where 

11 

4TT TT  (2T - e) 
 ) ; i(—=5— ) - ( 

4TT3e V
(TT

3
£)(2T - e) 

) (19a) 

6.    Sinusoidal Pulse 

h(t) = sin(^) = (-^) 
. . TTt   . . -       Tit   . exp i(_)   -  exp i(- TJT ) (20) 

G(f,«) =   (^r) VT+TT^T 

+   exp 

(f-2Tl       (f+7r) 

i|aTZ - 2irfTJ] 1 ^1 

ttT v        1 (f _ r_L) . 
IT u - £> • "ZT ^ 

+ 0(-^) 
f 

(" 1TFT
) :z—r 

exp [i^ffT' 

4T 
(f-^F 

2TTfTJ] 
1 
Z 

4T 

+   0(4)    (21) 
£ 



7.    Sine-Squared Pulse 

h(t)  = sin2 (^) 

.   TTt . TTt 
l , XT      _1TX2 
T (e -  e ) (22) 

G(f.«)«(-^) 
, 1 1 
"27 

1 

4(f-l) 4(7+1) 

+   exp  [ifo'T2 - 2irfT)l   ( 1 +-        l + 1 
i-) 

TT TT 1 TT I 

4TTT 

8.     Sine-of-6-Squared Pulse 

f(f 
2—r 

exp 

>    STS, 
ifftT2 -  2TTfT)j 

u.^TJ + 0(4) 
f 

(23) 

h(t) = sin 62(t);    62(t)  = IT 
(T-t)' (24) 

G(f.«) •  (^) 
1 1 

(f + Y)     (f-Y) 4TT   T 

exp   [i{o-T     -  2-rrfT/J 

+ (- -4-) 
8TT 

a + a 
T 
O 

(f+Y> 

T 
+ o<^> 

«-7iT> 
l 

(f 
2 1 

) 
T    J 

+ ("rV) 
4TT   T 

exp [ijttT2  -  2TTfTJ 

(£_^7 

+ (--4-7) 
4TT   T 

T 

+ (--V) 
4TT  T 

T - 

+ <-?-) 
IT  T 

T 

+ (-7?) 
(f2 - -V 

T        . 

+ 0(^) 

(25) 



The sine-of-0-squared pulse is a rather interesting one,   since it 

resembles certain physically realizable pulses having rapid rise times and 

well-defined tails.     Moreover,   the leading edge (the part to the left of the 

peak) or the trailing edge,   or both,   could be fitted together with other 

functions to approximate other pulses having one or both of the properties 

mentioned above.     Because of the practical potentialities of the sine-of-0- 

squared pulse,   a detailed version of this pulse is presented in Fig.   2. 
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RECTANGULAR PULSE 

h(t) 

-• t 
T/2 1 

h(t) = 1 

TRIANGULAR PULSE 

h(t) 

h,(t) = j \nO<Kj     ; 

h2(t) = (|)(-t+T)in-T
f<KT. 

PARABOLIC PULSE 

•- \ 

TRAPEZOIDAL PULSE 

h(t) 

C—i , 1_\ • t 
0       r_    T/2  \      T 

h (t) = —   in 0< t < T        ; 

hJt) = 1 in T   < K T        ; 

h3(t) = till'  in T+ < , < T 

T- t 

T + t 

PARABOLINEAR PULSE 

""^V 

If—1 1 1 v—I—  t 
T_   T/2  T+     T 

h1(t) = o]|tinO< t< T_      ;       T_ = ~ 

h2(t)= l-(-^) (t- |)2 in T_ <t< T+ 

h_(t) = o..(-t+T) in T+<t<T     ;      T+ 

11      2T-e "" 4T  + ton y 

, , ,        .   2  lit 
h(t) = sin    y. 

SINE-OF-fl-SQUARED PULSE 

T + t 
2 

h(t) = sin B"(t)      ; 

Fig.   1 
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IT bjr 3TT 2TT   TT 

6    4  ~F   2 
w    TT_     rr_ 
3     4      6 

TT(l-t')2 

16 

ll(l-t')2 1  -t' '"T t sin Ml -t')2} 

0 0. 0000 1.0000 T 0 

IT/16 0.2500 0.7500 0.7500T 0.19509 

ir/6 1 A/6 = 0.4082 0.5918 0.5918T 0. 50000 

T(/4 0.5000 0.5000 0.5000T 0. 7071 = 1 A/2 

ir/3 1 /V3~= 0.5773 0. 4227 0.4227T 0. 8660 = v/3/2 

ir/2 1/72 = 0.7071 0. 2929 0.2929T 1.0000 

2it/3 V/2/N/3 = 0.8165 0.1835 0.1835T 0. 8660 

3TC/4 vT/2 = 0. 8660 0.1340 0.1340T 0. 7071 

5TC/6 y/J/y/6 = 0.9129 0.0871 0.0871T 0. 5000 

Tt 1.0000 0. 0000 0 0.0000 

h(t) sin jit (T~2
f)    Usin {it(l-t') 

Fig.  2 

t,ST 
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C.     Description of the Methods Used in the Evaluation of  G(f, a) 

The evaluation of the integral for   G(f, a)   in Eq.   (3) depends primarily 

on the evaluation of the related integral 

t 
n 

D     (f, a)  =    I    exp    [i]»t2 -  ^-rrftjj  dt (2 6) 

s 
n 

subject to the inequalities stated in Eqs.   (6) and (7).     For convenience,   D 

will first be rewritten in another form by completing the square in the ex- 

ponent and then introducing the substitutions 

£ =   A - 1- ; A = 2fC = {^Z-n/a')f ; C = ^/ir/Za'; a = TT/2C
2
 ; 

s as 
v    = A -  2B     ;  2B     = -JL ; v    = (2C)(f -) (27) n nnCniT' 

t at 
u    =A-2A     ;  2A     = -£;   u    = (2C)(f -). n n n       C        n TT 

After completing the procedure just described,   one obtains,   in place of 

D     (f,^),   the following integral expression: 

i *   A2 

WA'C) ^   Don<^ '  ^2 ) = C  6_1Z Jn<A>C>   * <28> 

where 

n      .  IT ,.L 

rn(A,C)  =   ]     e dg 
u n 

I      (and hence   D     ) can now be evaluated provided the Fresnel-type integral, 
on on r 

J   ,   in the above equation can be evaluated subject to the inequalities stated 

11 



in Eqs.   (6) and (7).     During the course of the work being reported here,   it 

was found that one could evaluate   J   (A, C)   by employing successive integrations 

by parts,   while utilizing certain properties of the curve known as the Cornu 

Spiral.*   For example,   the first two integrations by parts are carried out in 

the following manner: 

v V 
n . IT   ^L n 

Jn(A,C)  =   \   (iTre)_1(i7T^e  7        d£) 5 

.  IT    ..2 

-1 l7 5 
(iTrg)       d(e ) ; 

u u 
11 

. TT   ,.2 .  TT   ,.2 
-1 -1    -2 l"Z 5 l7 * 

w = (iTr£)        ; dw =  -(i"rr)       |      d£ ; dv = d(e ) ; v = e 

.   TT    ,.2 
IT 5 . TT       2 . TT       2 n 

1 w v 1 1-Tu 

J   (A,C)  =(J—)e 7    n    -  (J— )e ^    n   + 
1Trvn 1UUn (iir)-e u 

n 

.  TT    ..2 .  TT   f 2 

-2    -3 -2        -4 1-Z ' 1-2" ^ 
w = (iir)       |   "   ; dw = -(iTr)      (3£      )d£; dv = d(e ) ; v = e 

(29) 

J   (A, C)  = 
nx / 1TTV 

1 
^    . TT    2 

2.     n 
•  ,.   71   3 

n        (ITT)   v 
n, 

> e 
1TTU ^hj 

l-T U 2     n 

\r 

n 

u 

.  TT   ,.2 

n 

.  TT   A2 

Continuing in this manner,   each time setting   dv   equal to   d(e )   and  w 

st 
equal to the rest of the integrand,   one obtains,   after the (M+l)       integration 

by parts,   the following expansions for the functions   J     and  I 
n on 

*See Section E. 
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where 

M 
J   (A, C)  =    2 

m = 0 L n 
TT       2 .,TT       2 

V       (v   ) exp i( T v    )  - U       (u  ) expi(Tu    ) mn    n 

+     RMn< u   , v  ) f n     n J 
(30) 

M 
I     (A,C)  =    2      |CV        exp (i$  )  - CU exp (i 7]   ) on1 n mn      r        n mn       r n 

m = 0 

[• exp (-i£ A2) 
Mn 

V       (v   ) mn     n 
m 

2m + l  '    m 
n 

(-1)(1)(3)  — (2m-l) > 
,.   .m + 1 mn    n    _     mn1   n 
(11T) 

n 

RA .   (u   , v  ) Mn1   n     n 
11 

% 

. IT >2  . 

2M+T d(e ' ; bM+l 
(-1)(1)(3) --- (2M+1) 

,.   >M+2 

n 
)(30a) 

as at 
n , ,-,„, ,,- n 

v    = (2C)(f -);u    = (2C)(f -); C = A j- n ir n ir y Za 

$<    =i(v     - A ) = as     -2Trfs    ;T]    = T(U     - A ) = at     - 2u f t 
n       c.  '   n n n      £     n n nV 

The functions   I        and  J     in Eqs.   (28) and (30) can now be used in 

the evaluation of certain important related integrals,   namely: 

t 
n 

3.       -   \   a       exp    Hot     -  2irft] dt = a      D on       .)      on       r   L I JJ on    on (31) 

*The convergence properties of this asymptotic expansion are discussed in 
the appendix. 

13 



t 
8D 

on 2ln =   i    ^n1  6XP   tP  -   2TTftHdt =   aln(^> ~5T 
s 

n 

?    8
2D 

£ on 

(31) 

22n =:   \   a2nt2 ex? tf^' " 2w£t}]dt = a2n^^ ^7~ 
s 
n 

where  a     ,   a,    ,   and a-,     are constants.     One or more of these integrals on       In 2n & 

occurs in the evaluation of the spectrum of each of the eight pulses previously 

listed.     For example,   all three are applicable when the pulse shape is either 

parabolinear or parabolic,   while only the first two apply in the case of the 

triangular or the trapezoidal pulse.     The above three integrals can be ex- 

pressed in terms of  I        and the first two derivatives of   I        with respect to r on on r 

A with the aid of the following relationships: 

A = 2fC ;  D      (f,»)=D     (JL,  -1- ) = I     (A, C) ; 
on on  2C     ?rT2 on 

2 2 (32) 

3D 91       a A 91 9   D ,31 
on on   dA  _  »-,,-.»       on on        i->r*\ on 

-5T~ = -T7TW-= (2C) -MT'      af2    E(
^

C)
    ~^r   • 

Equation (31) can now be re-written as follows: 

2     =a     I      ;   A     =a.   (i£)!fe.;%    = a,   (ig )Z 1^22. .    (33) on on   on In in    TT 3A Zn 2n     TT _ .L 
d A 

When the differentiations indicated in Eq.   (33) have been performed,   using 

the expression for   I        given in Eq.   (28),   one obtains 

14 



_.TT   A2 

^       - (a      C)   fj 1 e     7 

on on |_ nj 

2-.   = (a.   cz) TAJ   + (- ~) j' 1 « 
In In       '   L      n ITT '    nj x 

&      = (a,   C3)f(--L)J    +A2J    + (- i-) A J1   + (J-)2 J"l 
Zn      x   Zn       '   L     iTr      n n      x     lir n      x itr '       nj 

*     A2 

*     A2 
i7A 

where 

9J 
n 

T1    =    . T"   = 
n "   ^T   '       n " 

82J 

a A 

and 

J'  e 
n 

i^-A        3J        -i-T-A L& in 
Z n Z n n 

ES7T e 

J"  e 
n 

.ir .2 
i7A 82J 

dA 

•   T*   .Z .  . 
• 1 -T A L^. 1T1 

Z ..        . n      ..        >        n 
=   (1TTV    )  e -   (lTTU    ) e 

n n 
(35) 

n n       IT ,    Z       .2,        «        IT .    2       .Z. 
A = v    +-_-=u    + -—  ;  - (v     - A   )  = J,   ;T(u     - A )  = 77 

n        C n       C       Z      n n     Z      n n 

The next step is to replace   J     in Eq.   (34) by the expansion given in Eq.   (30) 

and   J'    and   J"   by the expressions given in Eq.   (35).     The result of making 
s 

these substitutions and combining terms,   while employing   A= v    +-7"=-     in 

conjunction with terms  involving  v     and  £     and  A = u    + -p*   in conjunction J &     n vn n       C J 

with terms involving   u     and  17    ,   is shown in the following equations: 

(a     C) V        e on mn 
n 

- (a     C)U        e on mn {'on} (36) 

15 



3. 
In 

M 
2 

(m=0 

M 
- {    2 

m = l 

ifr IT] 
(a,    s   C)V        e     n - (a.     t   C)  U        e    n 

In   n        mn In   n mn 

2 ^n 2 iT?i 
(a,_C   )v„V___e - (a,   C   )u  U        e 

In n   mn In n    mn + <rln   (37) 

SL 
2n 

M     r 
2 

i = 0 

•£. "/. 
(a,   s    C)V        e -  (a,   t   C)U        e 

2n   n mn en n mn 

)     2 
m = l 

Mr -> i<£ ? if? 
(2a,   s   C   )v   V        e     n -  (2a ,  t  C   )u  U        e    n 

£n   n n   mn iin n n   mn 

m = £ 

3      2 ^n 3      2 iT]n 
(a-,   C   )v    V        e - (a-,   C   )u   U        e 

2n n     mn 2n n    mn 

a?   C i&- irj 
+  U- -^ )(V.,    e     n - Ux.   e    n J ITT Mn Mn N (38) 

The remainder terms   r      ,   r,    ,   and   r-,     in the above equations are defined 
on       In 2n 

as follows: 

r       = (a     C e 
on on 

•*     A2 . TT   A2 

MR,,);   r,„  = (a,   C2e   ^       )(A)(RX/rJ Mn   '      In In Mn' 

•  W    A2 

3    _1"Z 1 2 
r,     = (a,   C    e )(-^ + A )(R. .   ) ; R., 2n 2n itr Mn'        Mn 

TT t2 
3M+1      .,     ^   . 
TZM+T   d(e > ' 

M+l 
(-1)(1)(3)  --- (2M-1)(2M+1) 

;M+2" 
(iTT)J 

(39) 

s as t fft 
vn = A- -£   = (2C)(f - -^2:);   u^ = A- -£   = (2C)(f -  -="- ) ~CT IT n 7J 
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notions  u     ,    J    ,   and cJ- The functions  d. J        and cJ-,     in Eqs.   (36),   (37),   and (38) can noi on        In Zn -*»#>»/ 

be combined in order to permit the computation of the FM spectra of three 

basic waveforms,   each one defined in the interval   s     < t < t   .     The three n n 

waveforms  referred to above correspond to the following definitions of the 

function   g(t)   appearing in Eq.   (1): 

g(t)  = h   (t)  - a       = constant    m    s     < t < t      (Rectangular Pulse BW        n on n n J3 .» Segment 

g(t)  = h   (t)  = a       + a,  t 6W n on In 
in    s     < t < t      (Linear Pulse (40) 

n n c . Segment) 

g(t)  = h   (t)  - a       + a,   t + a.-,   t      in    s     < t < t      (Parabolic 
n In Z n Pulse Segment) 

3-41-7666 

h (t) = a 
n On 

On 

0 Sn fn n n 

h (t) = a   + a   t 
n On      1n 

*t 

h (t) = a    +a  t + a    t 
n On      In 2n 

On 

/I 

0 

I \ 
I \ 
I I 
l I 

t 

CASE I 

RECTANGULAR 
SEGMENT 

CASE H 

LINEAR 
SEGMENT 

CASE TH 

PARABOLIC 
SEGMENT 

Fig.  3 

*See Fig.   3 and Eqs.   (40) through (43). 
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The results can be summarized as follows: 

Case I   Rectangular Pulse Segment   h   (t)  = aQn    in    s^ < t < tn 

a M 
=    2     Jh  (s  ) on _   |    n    n m = U 

CV        e mn 

1^1 n h   (t  ) n   n 

IT) 

CU        e mn +    r \   (41) )nj 

where 

h   (s   ) = h   (t  )  = a n    n n   n on 
(41a) 

Case II Linear Pulse Segment     h   (t)  = a       + a,   t   in    s     < t < t    2       n on In n n 

M 
<3-      +$-      =    S       h  (s  ) 

on In „      n    n 
m = U 

CV        e mn 
n h   (t   ) n   n 

rn 
CU        e mn 

M 
+    2     \ h' (s   ) 

, I    n'   n m = l 

^2     \r n 
C   v   V        e n   mn 

h« (t   ) nx n' 

-, IT] 
/~Z TT n C   u   U        e n   mn 

/r       + r.    ( 1   on lnf 

(42) 

where 

h  (s   ) - a      + a,   s   ;   h  (t ) = &      + a.   t   ;   h'(s  ) = h'(t ) = a        (42a) n    n on In   n        n   n on In n s n In 

Case III  Parabolic Pulse Segment   hn(t)  = aQn + a^t + a2nt      in    Sn < t < tn 

<9~       -|-  d       + cL 
M 
2     <h  (s  ) on In 2n „       nv   n 

m = U I 
CV        e mn 

n 
h   (t   ) n   n 

1T», 
CU        e mn 

M    / 
+    2     Jh' (s   ) 

j    ny   n' 
m = l I 

•   7 id'" 
C   v   V        e n   mn 

h" (t   ) n   n 

9 IT) 
r~Z      TT n 
C   u   U e n   mn 

M 

m = 2 

|1   2m-2 
\T "ZnT 

+     S      <-^T        hn<SJ 
•   ,   , i* 1 3    2 ^n 
C   v   V        e n    mn h«'(t   ) n    n 

„3    2 'n 
C   u   U        e n    mn , 

h"(s  )  r  - n    n      ^,3 
"ZTTI 

i* 
C   V•    e 

Mn 
n h'«(t ) n   n 

2tri c3u ̂ f{ r   „  + r        + r7 on In £ 

(43) 

"} 
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where 

2 2 
h   (s   ) = a       + a,    s     + a-,   s     ;    h  (t  ) = a       + a,   t    + a->   t n    n on Inn £n  n   '       n   n on Inn Lx\ 

(43a) 

h' (s   ) = a,     + 2a,   s     ;   h' (t ) = a,     + 2a,   t   ;   h"(a  ) = h"(t  ) = 2a9 n    n In 2n   n n   n In 2n n       n    n n   n 2 n 
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D.     Outline of the Problem of Evaluating the FM Spectrum,   G(f, a),   of a 
Pulse Describable as a Piecewise Linear Function of Time in the 
Interval   0 < t  <  T 

To illustrate the use of the formulas in Eqs.   (41) through (43a)  in 

calculating the FM spectrum of a useful function,   the problem of calculating 

the spectrum of a pulse which can be approximated by a piecewise linear 

function will now be considered briefly.     In this problem,   using the definition 

of  h(t)   for the piecewise linear case,   as given in Eqs.   (8) and (9),   one is 

faced with the evaluation of the following integral: 

G(f, a)  =    \   h(t)  e1 
2     ,   , at    -  2-rrft 

dt ; 

(44) 

h(t) = h   (t)    in   (n-l)(Z)   < t  £ ^J ;   h(t)  - a       + a.   t , x ' nv ' x        /XN' JN x ' on In 

which is a special case of the general integral defined in Eqs.   (1),   (2),   and 

(3) of this report.     In performing the required evaluation of the integral in 

Eq.   (44),   Case II,   as described in Eqs.   (42) and (42a),   is the case which 

applies.     Equation (44) can thus be rewritten in the following manner: 

iirftJdt + ya^f1^2 

s 
n 

(45) 

where 

.      1WT.       nT        T      . ,T.       nT 
n      v        ,VN'        N Nn XN'        N 

A formal expression for the spectrum described in Eq.   (44) can now be 

obtained by substituting in Eq.   (45) the asymptotic  expansion of the function 

<2L       +   c^j      given in Eqs.   (42) and (42a).     Once again,   subject to the assumption 

stated in Eq.   (7),   a suitable approximation for   G(f, a)   can be obtained by 
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retaining only the first non-vanishing term of each of the expansions given 

in Eq.   (42).     The addition of terms such as these for all of the N intervals 

into which the interval   0   ^ t  ^  T   has been divided of course entails additional 

mathematical complications.     However,   these are not too severe,   especially, 

as is often the case,   when the pulse shape   h(t)   can be adequately approximated 

by a piecewise linear function for which the number,   N,   of sub-intervals is 

between 5 and 10.     For values of N smaller than about 5,   the computations 

required are relatively simple.     In particular,   Case II was employed with 

a minimum of difficulty in the calculation of the spectrum of the triangular 

pulse,   the results of the calculation having been presented earlier in 

Eq.   (13).     Inthiscase only two sub-intervals were used (i. e. ,   N = 2). 

Similarly,   the spectrum of the rectangular pulse,   as given in Eq.   (11),   was 

calculated with the aid of the result given for Case I,   with N =  1 ,   while 

the spectra of the trapezoidal,   parabolic,   and parabolinear pulses,   as 

given in Eqs.   (17),   (15),   and (18),   respectively,   were calculated using the 

appropriate combinations of Cases I,   II,   and III and at most a value of  N = 3. 
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E.     Geometrical Interpretation of the First Term of the Expansion of  J   (A, C) 

It was stated earlier that certain properties of the curve known as 

the Cornu Spiral could be utilized in conjunction with the integration-by-parts 

procedure.     While it is not at all necessary to invoke the geometrical 

characteristics of the Cornu Spiral in this connection,   nevertheless by so 

doing one can provide convenient geometrical interpretations of the various 

terms in the expansion of   J   (A, C)   given in Eq.   (30),   and thus provide a 

much more satisfying analysis than one based on the purely formal integration- 

by-parts procedure outlined above.     In the following,   only the first term in 

the expansion and its geometrical interpretation will be discussed. 

The coordinates,   x and y,   the slope,   -r^~ ,   the second derivative,   *- , 
°* dx2 

and the radius of curvature,   p,   of the Cornu Spiral at a point  P(x, y) are 

given in the following equation. 

u u 

x(u)  -    \   cos j £    d£ ;   y(u)  =    \   sin ^   d£ u OP 

J(u)  = x + iy H   \   e d£ = 0?"    (see Fig.   4) 

dx = cos yu    du ;   dy sin -r- u   du (46) 

dy 
Hx- 

,       .        TT    2      du , 
y    tan iu ; d3rE u sec -j u 

d  y ii i dy' 3 TT    2 .       . 
 r E y    a u1 —r—  - TT u sec    -j u     ;   y* = Slope at   P(x, y)  ; 
dx 

p = Radius of Curvature at   P(x,y);  p =    1 + y' ,.213/2 
_!.     ,rll y»    =    

* TTl 1 

The function J, as shown in Fig. 4, is the vector OP from the origin 0 to 

the arbitrary point P on the spiral. Similarly, the function J in Eq. (28) 

is the vector   P   Q      shown in Fig.   4,   or equivalently,   the vector difference 
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3-41-7667 

TT\X
C -Idy 
 = tan   —*- 

2 dx 

X = X(u) = J   cos | £ d £      ;      y = y(u) = \    sin ^  H? ; 

— d nu2 

u = OP = arc length at P      ;      -~ = tan —~— = slope at P ; 

J(u)=x + iy= CUexp{i| 42}d| =OP      ; 

C = center of curvature of spiral at P      ; 

OECP = — = radius of curvature at P 
itu 

Fig.  4 
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y    Qn 

(u»*n*OQn) 

3-41-7668 

(u=un=0P V 

0 0.1 0.3 0.5 0.7 

^>C)=i 
'"n   ITT/2 k2   .,       fUn J it/2 % 

5r
ne-/2rd|-£"e1-^   d^ 

= OQ   -OP   =PQ n n       n   n 

Fig.   5 
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Fig.   6 
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0.7 

0.5<> 

0.3 

0 0.1 0.3 
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n °°        n   n n °° nn 

J (A,C) EP P^ - Q P^ 
IV n °° n °° 

P C   -Q D 
n   n n   n 

Fig.   7 
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 ' 
P   P_- Q   P^ shown in Fig.   6,   where   P„s P    (. 5,   . 5)   is the limiting point, n°on°o oo oo * ' or 
the point at which the arc length,   measured from   0,   is infinite.     It is clear, 

after knowing the meaning of   J   (A, C)   and noting the definitions of the upper 

and lower limits,   v    and u   ,   respectively,   given in Eq.   (27),   that when the 

inequality in Eq.   (7) is satisfied,   both ends of the vector   P   Q     (i. e. ,   the 

function   J   (A, C)) lie far within the wound-up portion of the spiral.     In this 

portion of the spiral,   the center of curvature,   C,   of the spiral and the 

limiting point,   P    ,   are very nearly coincident,   so nearly so in fact,   that in 

a great many applications (but not in the present one) the following is an 

excellent approximation for the integral   J   (A,C).     (See also Fig.   7.) 

V 9 n     . IT  „£. l7« rn(A,C) =  j   e Z '     d£ P  P     - Q  P n    oo n    oo 
u 

n 

J   (A,C) ~ P  C    - Q  D 

eXP [4? + J Un jj exP K?  + \ Vn j 
n n   n n   n TTU TTV 

n n 
(47) 

where    and      are the radii of curvature at   P     and  Q     respectively. 
TTUn uv n n n 

Equation (47) was obtained by first noting that the lengths of the vectors 
 *  > 1 1 
P   C     and  Q   D     are simply the radii of curvature       and    ,   respectively, 

n    n n   n r  ' Trun Trvn 

at the two points   P     and  Q   .     Next,   it is noted that the phase angles of the 
IT     ,   TT       2 1TT,TT2 , i^i 

two vectors are  y  t^u      and -j + y v      ,   respectively.     For example,   the 

term  -j u      is simply the angle of inclination of the spiral at   P   ,   as given in 

general in Eq.   (46).     The remaining angle,  -j ,   appears because the spiral is 
 * 

being approximated at   P     by a circle centered at   C   ,   and thus   PC      is 6    ^r n      ' n n   n 
perpendicular to the spiral.     The above ideas are illustrated schematically 

in Fig.   7 . 

Upon comparing Eq.   (47) with the third line of Eq.   (29),   one sees that 

the approximation given in Eq.   (47) is none other than the FIRST TERM in 

the expansion   J   (A,C).     Now,   the locus of the center of curvature of the 

spiral is called the EVOLUTE OF THE SPIRAL.     One can easily show that 

the second term in the expansion (terms in  —^-   and —5- )  is related to a 
u v 

n n 
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pair of vectors pointing from   C     to the center of curvature of the EVOLUTE 

at  C     and from   D     to the center of curvature of the EVOLUTE at   D   . n n n 
Continuing in this manner,   one can give geometrical interpretations to all 

of the remaining terms,   although the geometry involved becomes increasingly 

complicated with each succeeding term. 
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APPENDIX A 

Some Aspects of the Convergence Properties of the Asymptotic Expansions 
of the Fresnel Integrals   J   (A,C)   and  I     (A,C) 

In Section C an integration-by-parts procedure was used to obtain a 

purely formal asymptotic expansion of the integrals   J  (A,C)   and I     (A,C) 

defined in Eq.   (28).     The results obtained after one and two integrations 

were given in Eq.   (29).     The general result of employing   M+l   (recall the 

index m   runs from   0   to   M)  integrations was  shown in Eqs.   (30) and (30a). 

However,   nothing was  said at the time concerning the convergence properties 

of the expansions obtained in this purely formal manner.     In particular, 

nothing was said concerning the magnitude of the error incurred by neglecting 

the remainder term   R»«     in Eq.   (30)   and using the   M+l   terms in the ex- 

pansion to approximate the integral. 

The purpose of this appendix is to obtain an upper bound on the magni- 

tude of the error introduced by discarding all but a finite number of terms 

in the asymptotic  expansion of the function   J    (and hence   I     ) given in 

Eq.   (30).     The decidedly more difficult problem of estimating a lower bound 

on this error will not be treated here,   but it certainly merits attention at 

some later date.     To aid in the estimation of the upper bound,   the expression 

for   J   (A,C)   given in Eq.   (30) will now be rewritten in the following form: 

v 

Jn(A,C) •J-' 
TT   fc2 

1 5 
d£ = 

u 
n 

mn    n (u   ,v  ) > + Mn    n n vJ  ,   (A-l) 

where 

mn 

. IT      2 . IT      2 
\-y V l-y u 

V       (v)e^n-U       (u)e^n 

mn    n mn    n 

n 

RMn = J -ZM+J d(e 

IT    ,.Z 

u 
n 

V 
mn 

v 

b m 
2m + l U 

mn 
u 

b m 
2m+l 

n 

(-1)(1)(3)  ....   (2m-l) 
,.   xm + l 
(ITT) 

(A-2) 
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Tx/r     = V.,     e Mn Mn 

. TT        2 
1T V c.    n 

"UMne 

. IT     2 
Z     n 

(2M + l)b 
; b 

M 
M+l ITT 

as at 
v    = (2C)(f -);   u    = (2C)(f - n Tt'n TT 

a);  2c = ^ 

(A-2) 

In what follows use will also be made of the following important inequalities: 

3     <t    ;   v    >u    ;   i—J,— )  >  (      jJL, ) i   K, J   >  IV^I,     (A-3) n        n        n '       2M + 1 
u 

n 
2M + 1 Mn1 Mn' 

n 

which follow immediately from the definitions of  u     and  v     given above and 
n n 

in Eq.   (27) and from the way in which the limits of integration   s     and  t 

appear in the definition of the basic integral   D     (f, a)   given earlier in 

Eq.   (26): 

n 

D     (f, a) =    I    exp [ijo't2 -  2-rrft]] dt     , (26) 

n 

st 
A comparison will now be made of the magnitude of   T-.   ,   the (M + l)      term 

in the asymptotic expansion of  J   ,   and the magnitude of  R       ,   the remainder 

integral one obtains after performing   M+l   integrations by parts.     The term 

Tw     can be rewritten as follows: 
Mn 

. TT     2     r l-j u 
T..     = (-bx. e )     (• Mn      x     M 

1 
2M + 1 

n 

. TT       2        2 
.       .        1       .     17(vn"Un) 

} " (^MTT} e 

v 
n 

-   (A-4) 

The magnitude,   that is,   the absolute value,   of this complex vector function 

is  seen immediately to be: 

|T Mn1 M1 (     2M+1 ) " (     2M+1 } e 

. TT   ,      2 2 . 
W   v      - u     ) 

c      n        n 

u 
(A-5) 
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where use was made of the inequalities  stated in Eq.   (A-3).     Required also 

are the maximum and minimum values of the function     T\ ,     .     They are: 1    Mn1 ' 

| , lbMl lbMl 
|TMn'MAX "       ZM+1   +       2M+1   ' (A_6) 

u v 
n n 

TT        Z 2 
obtained by setting  7- (v       - u     )  in Eq.   (A-5)  equal to   (2j + 1)TT   (j = 0, ±1, ±2, . . ) 

and 

ibMi    iv 
'TMnlMIN 2M + 1    "        ZM+T   ' (A~7) 

u v 
n n 

obtained by setting  -j (v      - u     )  =  2jir   (j = 0,   ±1, ±2,   . . . ), 
TT ,     2 2 

r       -   U 
n n 

The magnitude of the remainder integral  R„     can best be examined 

by rewriting this integral,   as defined in Eqs.   (A-2) and (30a),   in the following 

form: 

Vp   buil ii^2        ^n  (2M+l)bX/r     il £ 

u u 
n n 

Because of the difficulties involved in integrating the above expression,   a 

closed-form expression for the magnitude of  R is unattainable,   although 

approximate integration techniques can be invoked if necessary to give a 

result close to the true value.     No attempt in this direction will be made 

here,   however.     Instead,   an estimate of an upper bound (that is,   a maximum 

value) on the magnitude of  R,,     will be deemed sufficient to meet the needs 6 Mn 
of the present analysis.     This upper bound can be easily obtained if it is 

observed that for the range of values of  u     and v     under consideration (as 6 n n 
determined by the definitions of  u     and  v     in Eq.   (27) and by the fundamental 

inequalities stated in Eqs.   (6) and (7)) the phase of the complex exponential 
.  TT   ,.2 

term   e in Eq.   (A-8) is an extremely rapidly oscillating function of   £ 

and thus in the region of integration,   u    <   $   < v   ,   there occurs a considerable 

amount of destructive interference between the incremental complex vectors 
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(2M+DbM ije2 

—•). .   » e d£   involved in the integration process.     On the 

basis of the above ideas,   one can immediately deduce the following very 

strong inequality: 

n 

u 
n 

(2M+l)b 

.ZM+Z 
Mv at,   = 

u 

M1 

"ZM+1 
1    M1 

"ZMTT • 
n 

(A-9) 

Combining the results presented in Eqs.   (A-6),   (A-7),   and (A-9),   one 

now obtains the following relationship between the various magnitudes: 

|bM| 
RMn'   <K  (      2M + 1 

u 
"ZM+T) =   '

T
MJMIN 

<  I
T

MJMAX   '  <A"10) 
ii n 

From this equation one obtains immediately the required relationship 

defining an upper bound on the magnitude of the error introduced by neglecting 

the remainder term   R. ..     appearing in the asymptotic  expansion of the 

function   J   ,   namely: n ' 

R Mn1 « ITMJ • Mn1 (A-ll) 

Equation (A-ll)  shows that the magnitude of the remainder term is 
st always much less than the magnitude of the (M+l)      term in the series,   and 

a closer examination reveals that,   for a fixed value of  M,   the magnitude of 

the remainder (and hence of the error) grows continually smaller with 

increasing  u    and  v   .     It is  evident,   then,   that,   by terminating the series 

at a term whose absolute value corresponds nearly to the maximum error 

tolerable in the calculation of the function   J   ,   one can establish an upper 
n —£*•  

bound on the error incurred by neglecting the rest of the terms.     The same 

considerations of course also apply to the calculation of the related function 

I        in Eq.   (30).     Finally,   these ideas can be extended relatively easily to 

the discussion of the convergence properties of more general asymptotic 
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expansions  such as those presented in Eqs.   (42) and (43),   and,   in particular, 

expansions of integrals of the following general type: 

t 

G   (f,a) =   f (a      +a,   t + a9   t2) e1^    " Ziriti dt   . (A-12) n J        on In Zn 
s n 
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